Users online: 52  Small font sizeDefault font sizeIncrease font size Print this article Email this article


 
Previous article  Table of Contents   Next article
CASE REPORT
Surg Neurol Int 2011,  2:63

Surgical excision of filum terminale arteriovenous fistulae after lumbar fusion: Value of indocyanine green and theory on origins (a technical note and report of two cases)


Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA

Date of Submission10-Mar-2011
Date of Acceptance20-Apr-2011
Date of Web Publication14-May-2011

Correspondence Address:
Edward A. M. Duckworth
Department of Neurosurgery, Baylor College of Medicine, Houston, TX
USA
Login to access the Email id

© 2011 Trinh et al; This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


DOI: 10.4103/2152-7806.81065

PMID: 21697980

Get Permissions

   Abstract 

Background: Intradural filum terminale arteriovenous fistulas (AVFs) are uncommon. We report two cases of this rare entity in which we used indocyanine green (ICG) videoangiography to identify the fistulous connection of each lesion.
Case Description: Two male patients presented with unresolved lower extremity weakness and paresthesias following lumbar fusion surgery. In each case, angiography showed an AVF between the filum terminale artery (FTA), the distal segment of the anterior spinal artery (ASA), and an accompanying vein of the filum terminale. A magnetic resonance image (MRI) obtained before lumbar fusion was available in one of these cases and demonstrated evidence of the preexisting vascular malformation. Surgical obliteration of each fistulous connection was facilitated by the use of ICG videoangiography. This emerging technology was instrumental in pinpointing fistula anatomy and in choosing the exact segment of the filum for disconnection.
Conclusion: Our findings indicate that intradural filum terminale AVFs may have a congenital origin and that ICG is a useful tool in their successful surgical management. As these cases demonstrate, spine surgeons should remain vigilant in evaluating patients based on their clinical symptomatology, even in the presence of obvious lumbar pathology.

Keywords: Arteriovenous fistula, filum terminale, indocyanine green videoangiography, intradural, perimedullary


How to cite this article:
Trinh VT, Duckworth EA. Surgical excision of filum terminale arteriovenous fistulae after lumbar fusion: Value of indocyanine green and theory on origins (a technical note and report of two cases). Surg Neurol Int 2011;2:63

How to cite this URL:
Trinh VT, Duckworth EA. Surgical excision of filum terminale arteriovenous fistulae after lumbar fusion: Value of indocyanine green and theory on origins (a technical note and report of two cases). Surg Neurol Int [serial online] 2011 [cited 2014 Nov 24];2:63. Available from: http://www.surgicalneurologyint.com/text.asp?2011/2/1/63/81065


   Introduction Top


Intradural filum terminale arteriovenous fistulas (AVFs) are exceedingly rare. Only three reports have focused specifically on an AVF arising from the filum terminale artery (FTA). [6],[13],[24] Endovascular embolization and surgical ligation of these fistulae are the main treatment options. Interruption of the fistulous connection is the goal of surgical treatment and remains the gold standard; [23] multi-level decompressive laminectomy and stripping of dilated draining veins appears unnecessary. [17] Difficulty often arises, however, in identifying the precise location of fistulization intraoperatively.

We present two cases of filum terminale AVF, which were treated surgically with the use of indocyanine green (ICG) videoangiography. Interestingly, both of our patients underwent lumbar fusion years prior, and reported progressive symptoms after their surgeries. Pre-lumbar fusion imaging in one of our patients (unavailable in the other) showed evidence of an unrecognized AVF, indicating that the lesion was present prior to lumbar surgery, and possibly congenital, rather than iatrogenic.


   Case Reports Top


Case 1

History

A 57-year-old, left-handed gentleman, with a history of back pain and leg weakness presented with complaints of bilateral lower extremity numbness and difficulty walking. He underwent an L4-S1 postero-lateral fusion 2 years prior, without getting any relief from the symptoms [Figure 1]. For 3 months prior to presentation, he had experienced acute deterioration in his lower extremity strength, intermittent sensations of numbness and tingling bilaterally, bowel and bladder dysfunction, and had sustained multiple falls. He complained of having "two logs" attached to his body.
Figure 1: X-rays of L4-S1 instrumentation and fusion

Click here to view


Examination

A neurological examination revealed bilateral proximal and distal lower extremity weakness, decreased lower extremity pinprick sensation and proprioception, decreased anal sphincter tone, and perineal hypoesthesia. Digital subtraction angiography demonstrated filling of the anterior spinal artery (ASA) extending past the conus and appearing to fistulize directly into a spinal vein in the region of the patient's previous surgery [Figure 2].
Figure 2: (a) Early phase spinal angiogram of the left T-10 intercostal artery injection, showing filling of the anterior spinal artery and the site of the filum terminale arteriovenous fistulas. (b) Later phase spinal angiogram showing initial fistulization. (c) Venous phase of spinal angiogram showing dilated and tortuous draining veins of the malformation

Click here to view


Case 2

Presentation

A 63-year-old, right-handed gentleman, with a history of chronic back pain presented to an outside facility in 2007 with numbness and weakness in his right foot. He underwent an L4-L5 interbody fusion and pedicle screw-rod fixation. Following surgery, his back pain improved, but he complained of slowly worsening numbness and weakness involving his lower extremities. He sustained multiple falls postoperatively, including a fall that resulted in fractures of his femur and wrist.

Workup

An electromyography (EMG) suggested bilateral chronic L4 to S3 radiculopathy. A magnetic resonance image (MRI) obtained from after his lumbar fusion demonstrated flow voids in the lumbar cistern and increased T2 signal in the thoracic cord and conus medullaris. A spinal angiogram showed an AVF located around L4-L5. However, the precise location of artery-vein transition was not apparent despite sophisticated neurovascular imaging [Figure 3].
Figure 3: DynaCT demonstrating serpentine vessel opacification, unable to localize exact fistula site from this study. Lumbar fusion instrumentation (pedicle screws) is visible

Click here to view


Operation

Under general anesthesia, each patient's old incision was opened and dissection carried down to his respective spinal instrumentation [Video 1].-

Extensive scarring from previous surgery obscured normal tissue planes. Once the thecal sac was opened and the arachnoid adhesions were taken down, it was noted in each case that the filum terminale harbored several enlarged blood vessels carrying arterialized blood [Figure 4]. Using a Zeiss Pentero IR 800 microscope (Carl Zeiss Co., Oberkochen, Germany), ICG videoangiography was performed, which demonstrated the exact point of fistulization in each case. This occurred on the terminal filum at its junction with the apex of the thecal sac in case one, and at the inferior extent of our exposure at L5 in case 2. Visualizing the filum with ICG videoangiography - and with the filum pinched with a bipolar forceps above the presumed fistulization site - intermittent brief release of the forceps pressure caused progressive opacification of distal artery, fistula, and eventually the draining veins [Figure 5]. Repeat ICG videoangiograms showed that pressure directly on the identified fistula sites (as opposed to above them) completely eliminated the opacification of the draining veins. 3-0 silk was used to doubly ligate the filum a few millimeters above and below these sites, and then the filum was coagulated and divided [Figure 6]. The resected AVF was sent for pathology [Figure 7]. Final ICG videoangiograms demonstrated the absence of any abnormal vessel opacification.
Figure 4: Intraoperative photograph showing the enlarged filum terminale artery connected to the arterialized dilated venous plexus

Click here to view
Figure 5: Indocyanine green videography showing enhancement with progressive filling of the fistula and draining vein with intermittent release of the feeding artery

Click here to view
Figure 6: Intraoperative photograph showing ligated filum terminale fistula

Click here to view
Figure 7: Artery and vein penetrating the thick, fibrous dura at the filum terminale with fibrofatty changes (bold arrow). Abrupt transition occurs between the feeding arterial vessel and venous vessel. Filum terminale vein at the center of the image is enlarged and filum terminale artery is distorted (black arrow)

Click here to view


Complications and postoperative course

Case 1 had two complications associated with his surgery. Intraoperatively, there was cauterization injury to his S3-S4 nerve roots due in part to obscured tissue planes from extensive epidural scarring. Impaired perineal sensation, rectal tone, and sphincter control improved during the course of admission and during his follow-up. He gained full control of his bowel and bladder within 90 days of his surgery. Scarring also made creating a hermetic seal of the thecal sac difficult, and a symptomatic pseudomeningocele formed and was repaired 1 month after his original surgery. Case 2 had no perioperative complications.

Both patients experienced dramatic improvement in lower extremity function immediately, which continued in the weeks and months following surgery. The patients reported increased and new sensations in the legs, and both were able to discard their walkers and ambulate independently.


   Discussion Top


Intradural ventral AVFs are characterized by a fistulous connection between the ASA and enlarged venous channels in the subarachnoid space. [14] Also known as type 4 spinal arteriovenous malformations (AVMs) [5] and direct AVFs, [20] these lesions account for only 10% of spinal AVMs. [7],[26]

AVFs of the terminal filum are rare. A review of the literature yields only four reported cases of intradural terminal filum AVF fed by the artery of the filum terminale. [6],[13],[24] Similar but disparate lesions include three cases of dural or intramedullary AVFs in the conus medullaris fed by the lateral sacral artery. [15],[16],[22] In this report, our two cases had remarkably similar and intriguing clinical presentations and pathologies.

Treatment modality: Surgical obliteration

For the treatment of each of these filum terminale AVF, we chose surgical disconnection rather than endovascular embolization to provide definitive treatment. Multiple studies have concluded that surgery has advantages over endovascular embolization in terms of cure rate and complication rates. [3],[8],[12],[17],[23] Results from a long-term retrospective study of 29 spinal dural AVF patients indicated that surgery had a high success rate and low morbidity. [3] Of the few previously reported cases of filum terminale AVF, two were treated surgically [24] and one was managed with a "multidisciplinary approach". Jin et al.[13] performed a transarterial embolization of the lateral sacral artery; however, because of the technical difficulty, microsurgical resection of arterial terminale fistula and draining vein was also performed.

In our cases, embolization was precluded given the anatomic relationship of the fistula to the ASA. Embolization of filum terminale AVF is complicated by the structural anatomy of the FTA; not only is the FTA serpiginous, risking penetration, but also its vascular integrity diminishes as it descends distally. [6]

Use of indocyanine green

Surgical management of filum terminale AVF requires accurate visualization of the vascular anatomy and precise localization of the fistula. Failure to identify the site of fistulization can result in occlusion of normal vessels, leading to spinal cord or nerve root infarction. [4] The use of ICG in our patients eliminated any uncertainty associated with identifying the fistula site, and allowed rapid surgical disconnection and confirmation.

ICG was first introduced for neurosurgical vascular application by Raabe et al., [18] and has since been used for all varieties of cerebrovascular surgery, including aneurysms, AVMs, and extracranial-intracranial bypass surgery. [4],[9],[10],[19],[25] A modified digital camcorder (which is integrated with the surgical microscope; in our case, the Zeiss Pentero IR 800) detects the fluorescent light emitted by IC-green dye (Akorn, Buffalo Grove, IL, USA) binding to globulins and records video images of the field of view. [9]

As highlighted by our operative technique, ICG allows tracking of the sequential arterial, capillary, and venous angiographic changes in real time. Temporary occlusion of the vasculature allowed us to start, stop, and pause the progression of vessel filling. The videoangiogram delineated how the ASA split into two vessels and how a third branch (the FTA) descended to fistulize exactly where the filum met the tip of the apex of the thecal sac (case 1) or at the level of L5 (case 2). In both cases, the arterial phase demonstrated abnormal early filling of the fistula and the filum terminale veins. After surgical extirpation of the fistula, ICG videoangiography demonstrated physiologic filling of the filum terminale veins and preservation of normal vasculature.

Compared with the use of radiological contrast agents, intravenous ICG is not associated with risk from radiation exposure or renal failure. [10] Intravenous ICG is non-invasive, making it advantageous versus intraoperative angiography. In fact, for spinal AVF surgery, an angiogram is especially arduous as it requires the insertion of a long armored femoral sheath catheter before the patient is positioned prone. [9],[10] ICG may eliminate the need for a postoperative angiogram. [9]

Theory on origins

Venous drainage of the filum has been at the center of previous theories on the origin of filum terminale AVFs. Tender et al. [24] reported two cases of filum terminale AVF and speculated that this lesion may be acquired in origin. They noted that a deficiency in medullary spinal venous drainage and a predominance of rostral drainage, combined with arterialized venous input from the AVF, may predispose to the development of venous congestion and myelopathy. This concern about lateral drainage may be overemphasized. The lateral medullary venous system may have a more variable drainage system than the longitudinal system, [21] and the vein of the filum terminale only drains vertically in two directions. [6] Ambiguity of lateral drainage on angiogram may also be due to the diminutive size of the veins, arteries, and capillaries in comparison to the FTA and vein. [6]

Rosenblum et al. [20] reviewed 81 cases of spinal AVMs and deduced that intradural AVMs are congenital in origin, whereas dural AVMs are acquired lesions. Jin et al. [13] presented one case of perimedullary AVF of the terminale filum and theorized that the fistula was the result of a congenital lesion. There has been one report of iatrogenic perimedullary fistula in a patient who had undergone resection of a conus ependymoma. [2] We present two cases of intradural terminale filum AVF and we have reason to believe at least one case was congenital in origin. Our two patients were diagnosed with lumbar degenerative disease for which they underwent lumbar fusion. However, the surgery failed to resolve their radiculomedullary symptoms. Review of a lumbar MRI obtained before surgery showed evidence of a preexisting intradural vascular malformation in case 1 [Figure 8]. It is likely that these filum terminale AVFs were the original perpetrators of many of each patient's symptoms.
Figure 8: Sagittal T2-weighted MRI of thoracolumbar spine revealing flow voids (arrow) in the low thoracic spinal levels, indicative of a spinal arteriovenous malformation. This MRI was obtained prior to lumbar fusion surgery and demonstrates evidence of arteriovenous fistulas in the presence of degenerating L4 disc

Click here to view


Vascular injury is a well-known complication following lumbar disc surgery. [1],[11] Most complications from lumbar laminectomy occur at the L4-L5 region; however, a review of literature yields only two acquired cases of dural AVMs following lumbar disc surgery: 1) a 60-year-old man with S1 dural AVF 3 years after lumbar discectomy [1] and 2) a 27-year-old man with a L5 dural AVM 7 years after lumbar disc herniation surgery. [27] In the case of the L5 dural AVM, [27] the vascular malformation developed contralateral to the previous surgical site, confounding the concept that this was an iatrogenic lesion. [1],[27] There have been no identified iatrogenic cases of filum terminale intradural AVF. Based on the clinical course of our patients and intraoperative observations, we do not believe the previous lumbar fusion operations led to the formation of an AVF. There was neither any evidence of dural tears noted at the time of the original surgery nor were they seen upon reoperation. It is difficult to envision how an extradural spine procedure with no evidence of penetration through the dura could have caused these intradural vascular defects.


   Conclusion Top


We report the use of ICG videoangiography in the surgical treatment of two rare cases of filum terminale AVF. ICG videoangiography allowed intraoperative localization of the fistulae sites and confirmation of their disconnection from the venous drainage system. The unique anatomy of the filum terminale presents navigational challenges for endovascular treatment, and microsurgery, especially with the aid of ICG, may be the treatment of choice for most of these lesions. Evidence of arteriovenous fistula on pre-lumbar disc surgery MRI in case 1 and resolution of myelopathy following surgical extirpation of both fistulas suggest that 1) the filum terminale arteriovenous fistulas were the original cause for symptoms and 2) intradural filum terminale AVF may be congenital in origin.

 
   References Top

1.Asakuno K, Kim P, Kawamoto T, Ogino M. Dural arteriovenous fistula and progressive conus medullaris syndrome as complications of lumbar discectomy. Case report. J Neurosurg 2002;97 Suppl 3:375-9.  Back to cited text no. 1
    
2.Barrow DL, Colohan AR, Dawson R. Intradural perimedullary arteriovenous fistulas (type IV spinal cord arteriovenous malformations). J Neurosurg 1994;81:221-9.  Back to cited text no. 2
[PUBMED]  [FULLTEXT]  
3.Cecchi PC, Musumeci A, Faccioli F, Bricolo A. Surgical treatment of spinal dural arterio-venous fistulae: Long-term results and analysis of prognostic factors. Acta Neurochir (Wien) 2008;150:563-70.  Back to cited text no. 3
[PUBMED]  [FULLTEXT]  
4.Colby GP, Coon AL, Sciubba DM, Bydon A, Gailloud P, Tamargo RJ. Intraoperative indocyanine green angiography for obliteration of a spinal dural arteriovenous fistula. J Neurosurg Spine 2009;11:705-9.  Back to cited text no. 4
[PUBMED]  [FULLTEXT]  
5.Djindjian M, Djindjian R, Hurth M, Rey A, Houdart R. Intradural extra-medullary spinal arteriovenous malformations fed by the anterior spinal artery. Surg Neurol 1977;8:229-37.  Back to cited text no. 5
[PUBMED]    
6.Djindjian M, Ribeiro A, Ortega E, Gaston A, Poirier J. The normal vascularization of the intradural filum terminale in man. Surg Radiol Anat 1988;10:201-9.  Back to cited text no. 6
[PUBMED]    
7.Grote EH, Bien S. Arteriovenous malformations of the spinal cord. In: Youmans JR, editor. Neurological Surgery: A Comprehensive Reference Guide to the Diagnosis and Management of Neurosurgical Problems. 2 nd ed. Philadelphia: WB Saunders; 1996. p. 1511-30.  Back to cited text no. 7
    
8.Hall WA, Oldfield EH, Doppman JL. Recanalization of spinal arteriovenous malformations following embolization. J Neurosurg 1989;70:714-20.  Back to cited text no. 8
[PUBMED]  [FULLTEXT]  
9.Hanel RA, Nakaji P, Spetzler RF. Use of microscope-integrated near-infrared indocyanine green videoangiography in the surgical treatment of spinal dural arteriovenous fistulae. Neurosurgery 2010;66:978-85.   Back to cited text no. 9
[PUBMED]  [FULLTEXT]  
10.Hettige S, Walsh D. Indocyanine green video-angiography as an aid to surgical treatment of spinal dural arteriovenous fistulae. Acta Neurochir (Wien) 2010;152:533-6.   Back to cited text no. 10
[PUBMED]  [FULLTEXT]  
11.Hildreth DH, Turcke DA. Postlaminectomy arteriovenous fistula. Surgery 1977;81:512-20.  Back to cited text no. 11
[PUBMED]    
12.Huffmann BC, Gilsbach JM, Thron A. Spinal dural arteriovenous fistulas: A plea for neurosurgical treatment. Acta Neurochir (Wien) 1995;135:44-51.   Back to cited text no. 12
[PUBMED]    
13.Jin YJ, Kim KJ, Kwon OK, Chung SK. Perimedullary arteriovenous fistula of the filum terminale: Case report. Neurosurgery 2010;66:E219-20.   Back to cited text no. 13
[PUBMED]  [FULLTEXT]  
14.Kim LJ, Spetzler RF. Classification and surgical management of spinal arteriovenous lesions: Arteriovenous fistulae and arteriovenous malformations. Neurosurgery 2006;59 Suppl 5:S195-201.  Back to cited text no. 14
    
15.Mhiri C, Miladi MI, Triki C, Kechaou MS. Sacral meningeal arteriovenous fistula supplied by branches of the hypogastric artery revealed by conus medullaris infarction. Spinal Cord 2000;38:711-4.  Back to cited text no. 15
[PUBMED]    
16.Mochizuki T, Nemoto Y, Inoue Y, Tashiro T, Sakanaka H. Lateral sacral artery supply to an intramedullary arteriovenous fistula at the conus medullaris. Neuroradiology 1991;33:419-21.   Back to cited text no. 16
[PUBMED]    
17.Oldfield EH, Di Chiro G, Quindlen EA, Rieth KG, Doppman JL. Successful treatment of a group of spinal cord arteriovenous malformations by interruption of dural fistula. J Neurosurg 1983;59:1019-30.   Back to cited text no. 17
[PUBMED]  [FULLTEXT]  
18.Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V. Near-infrared indocyanine green video angiography: A new method for intraoperative assessment of vascular flow. Neurosurgery 2003;52:132-9.  Back to cited text no. 18
[PUBMED]  [FULLTEXT]  
19.Raabe A, Beck J, Seifert V. Technique and image quality of intraoperative indocyanine green angiography during aneurysm surgery using surgical microscope integrated near-infrared video technology. Zentralbl Neurochir 2005;66:1-8.  Back to cited text no. 19
[PUBMED]  [FULLTEXT]  
20.Rosenblum B, Oldfield EH, Doppman JL, Di Chiro G. Spinal arteriovenous malformations: A comparison of dural arteriovenous fistulas and intradural AVM's in 81 patients. J Neurosurg 1987;67:795-80.  Back to cited text no. 20
[PUBMED]  [FULLTEXT]  
21.Rosenwasser RH, Armonda R. Spinal Vascular Malformations: Normal Anatomy, Diagnostic Angiography, and Angiographic Classification. In: Barrow D, editor. Spinal Vascular Malformations; 1999. p. 23-35.  Back to cited text no. 21
    
22.Schaat TJ, Salzman KL, Stevens EA. Sacral origin of a spinal dural arteriovenous fistula: Case report and review. Spine 2002;27:893-7.  Back to cited text no. 22
[PUBMED]  [FULLTEXT]  
23.Steinmetz MP, Chow MM, Krishnaney AA, Andrews-Hinders D, Benzel EC, Masaryk TJ, et al. Outcome after the treatment of spinal dural arteriovenous fistulae: A contemporary single-institution series and meta-analysis. Neurosurgery 2004;55:77-88.  Back to cited text no. 23
[PUBMED]  [FULLTEXT]  
24.Tender GC, Vortmeyer AO, Oldfield EH. Spinal intradural arteriovenous fistulas acquired in late adulthood: Absent spinal venous drainage in pathogenesis and pathophysiology. J Neurosurg Spine 2005;3:488-94.  Back to cited text no. 24
[PUBMED]  [FULLTEXT]  
25.Woitzik J, Horn P, Vajkoczy P, Schmiedek P. Intraoperative control of extracranial-intracranial bypass patency by near-infrared indocyanine green videoangiography. J Neurosurg 2005;102:692-8.  Back to cited text no. 25
[PUBMED]  [FULLTEXT]  
26.Wong JH, Kim JH, Awad IA. Pathological Features of Spinal Vascular Malformations. In: Barrow D, editor. Spinal Vascular Malformations; 1999. p. 9-21.  Back to cited text no. 26
    
27.Yoshino O, Matsui H, Hirano N, Tsuji H. Acquired dural arteriovenous malformations of the lumbar spine: Case report. Neurosurgery 1998;42:1387-9.  Back to cited text no. 27
[PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8]


This article has been cited by
1 Indocyanine green videoangiography methodological variations: review
Juan A. Simal-Julián,Pablo Miranda-Lloret,Rocio Evangelista-Zamora,Pablo Sanromán-Álvarez,Laila Pérez de San Román,Pedro Pérez-Borredá,Andrés Beltrán-Giner,Carlos Botella-Asunción
Neurosurgical Review. 2014;
[Pubmed]
2 Arteriovenous Fistula of the Filum Terminale: Diagnosis, Treatment, and Literature Review
S. Fischer,M. Aguilar Perez,H. Bassiouni,N. Hopf,H. Bäzner,H. Henkes
Clinical Neuroradiology. 2013; 23(4): 309
[Pubmed]
3 Filum terminale arteriovenous fistulas: the role of endovascular treatment
Ekachat Chanthanaphak,Sirintara Pongpech,Pakorn Jiarakongmun,Chai Kobkitsuksakul,Cuong Tran Chi,Karel G. TerBrugge
Journal of Neurosurgery: Spine. 2013; 19(1): 49
[Pubmed]
4 Direct Surgery for Spinal Arteriovenous Fistulas of the Filum Terminale With Intraoperative Image Guidance
Toshihiro Takami, Toru Yamagata, Yutaka Mitsuhashi, Koji Hayasaki, Kenji Ohata
Spine. 2012; 37(24): E1524
[VIEW]
5 Structure and Dynamics of Carbohydrate Residues. Fluorescence Spectroscopy Studies
Albani, J.R.
Encyclopedia of Analytical Chemistry. ;
[Pubmed]



 

 
Top
  
Previous article    Next article

    

 
  Search
 
   Browse articles
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Case Reports
    Discussion
    Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed6617    
    Printed176    
    Emailed0    
    PDF Downloaded303    
    Comments [Add]    
    Cited by others 5    

Recommend this journal